Brief information about the project

Name of	PD19574210 "Development of environmentally sefe technologies for obtaining
Name of the project	BR18574219 «Development of environmentally safe technologies for obtaining innovative products from natural and man-made raw materials of Kazakhstan»
Relevance	Kazakhstan has significant reserves of rare metals but does not have enterprises of rare metal raw materials itself. In Soviet times, several rare metals were produced at enterprises of non-ferrous metallurgy of Kazakhstan.
	The revival of the rare metal industry should be the engine of the mining and processing industry.
	Involvement of deposits of rare metals together with industrial products and wastes of a few industries in industrial processing will be a breakthrough direction in the technological development of Kazakhstan.
	As is known, modern technologies, on which the innovative economy is based, are based on the high quality of products, energy and material saving, and environmental safety of processes. Supercritical fluid technologies (SCFT), which are based on simple reagents such as carbon dioxide, water, etc., are multi-tonnage productions that cover many industries. Every year several million tons of plant raw materials in
	the world are processed using CO_2 . It is CO_2 that has found greater use as extractants in SCFE-processes due to its inertness, non-toxicity and cheapness.
	The target Program "Green technologies based on supercritical media" was successfully implemented at the CPCMRA from 2018 to 2020. The present project of the Program is its development and provides for the integrated processing of raw
	materials, semi-products and man-made waste containing valuable components by the SCFT method; development of environmentally safe technologies for obtaining metals and special purpose alloys.
Purpose	Integrated processing of raw materials, semi-products and man-made waste containing valuable components using supercritical technologies (SCFT). Development of environmentally safe technologies of production of metals and alloys for special purposes.
Objectives	- to develop and certify in the state bodies the new methods of analysis of rare and rare-earth metals and their impurities;
	- Develop scientific bases of technology for producing concentrates of rare-earth metals;
	 to develop technologies of by-product extraction of rare elements from stock solutions of technological cycle of mining enterprises of NAC KazAtomProm JSC; to obtain individual metals from collective extracts of REM, extracted from man-
	made waste and natural raw materials by SCFE method; - to develop technologies for obtaining extra pure Hg, Zn, Cu, In; to graate the technology of obtaining precision titenium allows with ultrafine
	 to create the technology of obtaining precision titanium alloys with ultrafine grain structure using rare and rare-earth metals; Develop a universal high-efficiency flow-through reactor with an original catalyst to produce biodiesel fuel.
Expected	As a result of the Program implementation the following results will be
and achieved	achieved, specified in Terms of Reference No.26 to the tender: - new methods of analysis of rare and rare-earth metals and their impurities
results	 have been developed and certified in state bodies; The SCF technology for the integrated processing of natural (the Kundybai deposit) and anthropogenic (phosphogypsum dumps of Kazphosphate LLP) raw materials with the extraction of a number of rare and rare-earth metals was
	developed;

	- the technology for associated extraction of rare elements from stock solutions of the technological cycle of mining enterprises of NAC KazAtomProm JSC was developed;
	 methods of obtaining especially pure Hg, Zn, Cu, In were created; technologies for obtaining precision ultra-fine-grained titanium alloys with
	the use of some rare and rare-earth metals were developed;
	- A universal high-efficiency flow-through reactor with an original catalyst
	for producing biodiesel has been developed;
	 published at least five (5) articles and (or) reviews in peer-reviewed scientific publications in the scientific area of the program, included in 1 (first), 2 (second) or 3 (third) quartiles in the Web of Science database and (or) having a CiteScore percentile in the Scopus database of at least 50 (fifty); and five (5) articles in editions recommended by the CQAES; at least 3 applications for patents for utility models and (or) inventions were
	submitted
	For 2023, the following results were obtained:
	1) Sample preparation and analysis of initial research objects was carried out.
	2) Leaching of Kundybay deposit ore depending on the nature and composition of leaching mixture was studied. Supercritical CO2 conversion of PG containing
	REE was carried out. Optimal conditions of phosphogypsum conversion were
	determined.
	3) Sorption of rhenium from model and process solutions by a number of ion-
	exchange resins was investigated. The best sorbents (Biolite 200U and SQD 201U)
	were selected for model solutions, the recovery was 99.96 and 99.76%, respectively.
	For sorption of rhenium from production solutions the best was Biolite 200U anionite, the recovery rate was 64.57%. Desorption of rhenium by sulfuric acid from Biolite
	200U and SQD 201U sorbents allows to recover 84.73% and 80.17% of rhenium,
	respectively.
	4) Methods for analyzing Hg and impurities in solutions were developed. Optimal
	electrolyte composition and electrolysis parameters for pure Hg extraction were
	determined. A simulation model of the electrolyzer for obtaining pure Zn and In in
	COMSOL Multiphysics was developed. 5) Regularities of the process of reduction of copper (II) ions by titanium (III)
	ions, which are intermediate products of electrode processes in the formation of Cu
	powders from electrolytes, have been established. It is shown that in the process of
	reduction of Cu (II) ions in sulfuric acid solutions by titanium (III) ions a copper
	powder with extraordinary activity is formed.
	6) The technical task has been developed and design and engineering work on the
	manufacture of a universal high-efficiency flow reactor with the original catalyst has
	been carried out.
	7) 3 patents for utility model and inventions were obtained. 3 articles have been published in a demostia or foreign scientific publication recommended by Committee
	published in a domestic or foreign scientific publication recommended by Committee for Quality Assurance in the Field of Science and Higher Education of the Ministry
	of Science and Higher Education of the Republic of Kazakhstan
Research	1. Nauryzbayev Mikhail Kasymovich, Doctor of Technical Sciences, Professor,
team	Academician of KazNANS.
members	Hirsch Index - 9 (Scopus).
with their	Web of Science Researcher ID - D-3432-2012
identifiers	https://www.webofscience.com/wos/author/record/180447,1093398,27160849
(Scopus Author ID,	ORCID: 0000-0002-6781-6464 https://orcid.org/0000-0002-6781-6464 Scopus ID: 6506602038
Researcher	https://www.scopus.com/authid/detail.uri?authorId=6506602038
rescurence	<u>https://www.soopus.com/uumu/uumu/uumu/uumoru=0500002050</u>

ID,	2. Tokpayev Rustam Rishatovich, PhD, Corresponding Member of KazNANS.
ORCID, if	Hirsch Index - 4 (Scopus).
available)	Author ID in Scopus - 56998810900
and links to	https://www.scopus.com/authid/detail.uri?authorId=56998810900
relevant	Researcher ID Web of Science D-3859-2015
profiles	https://www.webofscience.com/wos/author/record/440647
	ORCID ID 0000-0002-0117-4454
	https://orcid.org/0000-0002-0117-4454
	3. Alina Kulbaevna Galeeva, PhD, Associate Professor
	Hirsch Index - 6 (Scopus).
	ResearcherID Web of Science: A-8292-2015
	https://www.webofscience.com/wos/author/record/1099919
	ORCID: 0000-0001-9303-5277
	https://orcid.org/0000-0001-9303-5277
	Scopus ID: 56436524000
	https://www.scopus.com/authid/detail.uri?authorId=56436524000
	4. Baeshova Azhar Qospanovna, Doctor of Technical Sciences, Professor
	Hirsch Index - 3 (WoS).
	ResearcherID Web of Science: A-8794-2015
	https://www.webofscience.com/wos/author/record/1749768,5185356,41861088
	ORCID: <u>https://orcid.org/0000-0002-9076-8130</u> ,
	Scopus Author ID: 56177619400.
	https://www.scopus.com/authid/detail.uri?authorId=56177619400 5. Atchabarova Azhar Aidarovna, PhD
	Hirsch Index - 4 (Scopus).
	ResearcherID Web of Science: D-3857-2015
	https://www.webofscience.com/wos/author/record/1355961,46719493,53537705
	ORCID: 0000-0002-4600-2728
	https://orcid.org/0000-0002-4600-2728
	Scopus ID: 56998822600
	https://www.scopus.com/authid/detail.uri?authorId=569988226006.
	6. Avchukir Haisa, PhD
	Hirsch Index - 4 (Scopus).
	ResearcherID Web of Science: P-5738-2017
	https://www.webofscience.com/wos/author/record/1708940,28914729
	ORCID: 0000-0001-6612-0775
	https://orcid.org/0000-0001-6612-0775
	Scopus ID: 57207207777
	https://www.scopus.com/authid/detail.uri?authorId=57207207777
	7. Kishibayev Kanagat Kazhmukhanovich, PhD
	Hirsch Index - 3 (Scopus).
	Author ID in Scopus - 56604294100
	https://www.scopus.com/authid/detail.uri?authorId=56604294100
	Researcher ID Web of Science C-7678-2015
	https://www.webofscience.com/wos/author/record/715617,53609035
	ORCID ID 0000-0003-1590-5243
	https://orcid.org/0000-0003-1590-5243
	8. Shapovalov Yuriy Aleksandrovich, higher, Doctor of Technical Sciences,
	Academician of KazNANS Hirsch index 1 (Scopus)
	Hirsch index - 1 (Scopus). Author ID in Scopus 57216613061
	Author ID in Scopus - 57216613061
	https://www.scopus.com/authid/detail.uri?authorId=57216613061

Researcher ID Web of Science DYN-3210-2022
https://www.webofscience.com/wos/author/record/16073613
ORCID ID 0000-0002-4107-1636
https://orcid.org/0000-0002-4107-1636
9. Zlobina Elena Viktorovna, Candidate of Chemical Sciences.
Hirsch Index - 1 (Scopus).
Scopus ID: 41262845500
https://www.scopus.com/authid/detail.uri?authorId=41262845500
ResearcherID Web of Science: A-5782-2015
https://www.webofscience.com/wos/author/record/1395894
10. Ismailova Akmaral Gazizovna, Candidate of Chemical Sciences.
Hirsch Index - 2 (Scopus).
Scopus ID: 57193336562.
https://www.scopus.com/authid/detail.uri?authorId=57193336562
ORCID: 0000-0002-5555-2705
https://orcid.org/0000-0002-5555-2705
ResearcherID Web of Science: FAO-7992-2022
https://www.webofscience.com/wos/author/record/22898385
11. Ishkenov Anvar Rakhimovich, Candidate of Chemical Sciences.
Hirsch Index - 1 (WoS)
Researcher ID Web of Science FBN-0635-2022
https://www.webofscience.com/wos/author/record/23091029
12. Khavaza Tamina Narimanovna.
Hirsch Index - 3 (Scopus).
Author ID in Scopus - 57345081100
https://www.scopus.com/authid/detail.uri?authorId=57345081100
ResearcherID Web of Science: GEW-4233-2022
https://www.webofscience.com/wos/author/record/30114620,53605324
ORCID ID 0000-0002-1614-3060
https://orcid.org/0000-0002-1614-3060
13. Dinara Aktaikyzy Abduakhytova
Hirsch Index - 3 (Scopus).
ResearcherID Web of Science: GYA-5917-2022
https://www.webofscience.com/wos/author/record/34846135
ORCID: 0000-0002-4316-0755
https://orcid.org/0000-0002-4316-0755
Scopus ID: 57344630000
https://www.scopus.com/authid/detail.uri?authorId=57344630000
14. Ibraimov Zair Tairovich, 3rd year doctoral student
Hirsch Index - 2 (Scopus).
Author ID in Scopus - 57345388600
https://www.scopus.com/authid/detail.uri?authorId=57345388600
ORCID 0000-0002-1476-3231
https://orcid.org/0000-0002-1476-3231
ResearcherID Web of Science: CWH-1075-2022
https://www.webofscience.com/wos/author/record/9271482,3254059515.
15. Bekishev Zhenis Zhumakhanovich
Hirsch Index - 1,
Author ID in Scopus - 57382007800
https://www.scopus.com/authid/detail.uri?authorId=57382007800
16. Kanat Isatayuly Beknazarov
ORCID ID 0000-0001-5023-0486

[1.44 may // and 1 and /0000 0001 5022 0496
	https://orcid.org/0000-0001-5023-0486
	ResearcherID Web of Science: IUY-5405-2023
	https://www.webofscience.com/wos/author/record/46794978
	17. Nefedov Alexander Nikolaevich, Candidate of Chemical Sciences.
	18. Tkacheva Galina Dmitrievna, higher, PhD in chemistry
	Hirsch Index - 1 (WoS).
	Author ID in Scopus - 24582591200
	https://www.scopus.com/authid/detail.uri?authorId=24582591200
	ResearcherID Web of Science: ECF-9968-2022
	https://www.webofscience.com/wos/author/record/16970369
	19. Baltabaev Murat Yergalievich, Candidate of Chemical Sciences.
	Hirsch Index - 3 (Scopus).
	Author ID in Scopus - 57201335738
	https://www.scopus.com/authid/detail.uri?authorId=57201335738
	ResearcherID Web of Science: EMH-6445-2022
	https://www.webofscience.com/wos/author/record/19406837,43850226
	20. Nakyp Abdirakym Muratuly, doctoral student of the 1st year of study
	Hirsch Index - 1 (Scopus).
	Author ID in Scopus - 58561589100
	https://www.scopus.com/authid/detail.uri?authorId=58561589100
	ORCID: 0000-0002-7189-9928
	https://orcid.org/0000-0002-7189-9928
	ResearcherID Web of Science: JDN-0866-2023
	https://www.webofscience.com/wos/author/record/48948579
	21. Bekey Akbayan, doctoral student of the 2nd course
	ResearcherID Web of Science: JCV-9290-2023
	https://www.webofscience.com/wos/author/record/48777556
	22. Baitulaeva Bakhyt Kambaralievna
	23. Kalugina Svetlana Mikhailovna
	ResearcherID Web of Science:ILQ-3007-2023
	https://www.webofscience.com/wos/author/record/44462751
	24. Koyshybekova Aizhan Kairatkyzy
	25. Kudaibergen Olzhas Kõrgyzalyuly
	26. Zhaksybay Bagashar Bakhytuly
	27. Tolbai Dinmuhamed Zambululy
	28. Askar Maratovich Mukanov
	29. Balgyn Zhasulankyzy Dyusenkulova
	30. Tølegen Nazerke Tøregeldikyzy
	31. Terlikbaeva Alma Zholdasovna, Ph.D., RSE NC CPMC RK
	Hirsch index - 4 (Scopus).
	Author ID in Scopus - 57205372715
	https://www.scopus.com/authid/detail.uri?authorId=57205372715
	ORCID 0000-0002-2537-897X
	https://orcid.org/0000-0002-2537-897X
	ResearcherID Web of Science: AAQ-2883-2020
	https://www.webofscience.com/wos/author/record/2017459,30067569,51212557
	32. Shayakhmetova Roza Abdrakhmanovna, Candidate of Technical Sciences,
	RSE NC CPMC RK
	Hirsch Index - 2 (Scopus).
	Author ID in Scopus - 6506211149
	https://www.scopus.com/authid/detail.uri?authorId=6506211149
	ORCID 0000-0003-2265-2125

https://orcid.org/0000-0003-2265-2125
ResearcherID Web of Science: DTW-0858-2022
https://www.webofscience.com/wos/author/record/14961260
33. Alimzhanova Aliya Margulanovna, PhD, RSE NC CPMC RK
Hirsch Index - 2 (Scopus).
Author ID in Scopus - 57190441009
https://www.scopus.com/authid/detail.uri?authorId=57190441009
ORCID 0000-0001-6098-7626
https://orcid.org/0000-0001-6098-7626
ResearcherID Web of Science: FYU-2530-2022
https://www.webofscience.com/wos/author/record/28712923
34. Mukhametzhanova Anar Amankeldykizy, RSE NC CPMC RK
Hirsch Index - 1 (WoS).
ResearcherID Web of Science: HJT-0790-2023
https://www.webofscience.com/wos/author/record/37561006
35. Sakhova Banu Tileubergenovna, Master's degree, RSE NC CPMC RK
36. Kali Aynur Azimkhankyzy, Master, RSE NC CPMC RK
37. Baeshov Abduali Baeshovich, Doctor of chemical sciences, Professor, JSC
"Institute of fuel, catalysis and electrochemistry named after D.V.Sokolsky".
D.V.Sokolsky Institute of Fuel, Catalysis and Electrochemistry
Hirsch Index - 4 (Scopus).
Author ID in Scopus - 55829870400
https://www.scopus.com/authid/detail.uri?authorId=55829870400
ORCID 0000-0003-0745-039X
https://orcid.org/0000-0003-0745-039X
ResearcherID Web of Science: AHE-8230-2022
https://www.webofscience.com/wos/author/record/3893742,4494879
38. Turlybekova Makpal, JSC "Institute of Fuel, Catalysis and Electrochemistry
named after D.V.Sokolsky". D.V. Sokolsky Institute of Fuel, Catalysis and
Electrochemistry
39. Fatima Mukhambetzhankyzy Zhumabay, JSC "Sokolsky Institute of Fuel,
Catalysis and Electrochemistry". D.V.Sokolsky Institute of Fuel, Catalysis and
Electrochemistry
Hirsch Index - 1 (WoS).
ResearcherID Web of Science: DYB-9119-2022
https://www.webofscience.com/wos/author/record/15969520
40. Toksanbayev Bolatbek Zhakypbekovich, PhD, "Institute of High
Technologies" LLP
41. Iskakov Zaken Alisherovich Zaken Alisherovich, Institute of High
Technologies LLP
42. Kumarbekova Almira Tursbekovna, Institute of High Technologies LLP
43. Artem Sergeevich Fomenko, Institute of High Technologies LLP
44. Akim Ruslanovich Ergeshev (NITU "MISIS", Moscow, RF)
Hirsch Index - 1 (Scopus).
Author ID in Scopus - 57219942105
https://www.scopus.com/authid/detail.uri?authorId=57219942105
ORCID 0000-0003-0581-4620
https://orcid.org/0000-0003-0581-4620
ResearcherID Web of Science: AGV-0967-2022
https://www.webofscience.com/wos/author/record/3817212
45. Mazanov Sergey Valerievich, Ph.D., KNITU (Kazan, Russia)
Hirsch Index - 4 (Scopus).

	Author ID in Scopus - 7801635831
	https://www.scopus.com/authid/detail.uri?authorId=7801635831
	ResearcherID Web of Science: FMW-3101-2022
	https://www.webofscience.com/wos/author/record/25793494
List of	1. S.V. Mazanov, A.O. Solovyova, A.U. Ayetov, I.M. Mubarakshin, R.Z. Musin,
publications	A.V. Tarasova. Production of biodiesel from Shea butter // Vestnik of Tupolev State
with links	Technical University named after A.N. Tupolev 2023 № 1 C. 26-30.
to them	(<u>https://vestnik.kai.ru/</u>)
	2. Tolbay D.J., Bekishev J.J., Ismailova A.G., Zlobina E.V., Tasibekov H.S.,
	Dzhumadilov T.K., Iskakov Z.A., Toksanbayev B.J., Kumarbekova A.T., Fomenko
	A.S. Sorption extraction of rhenium by different ionites from uranium sorption maters
	// Chemical Journal of Kazakhstan №4 84 (2023) C.142-150.
	(https://chemjournal.kz/index.php/journal/article/view/768)
	3. A.J. Terlikbaeva, A.M. Alimzhanova, R.A. Shayakhmetova, A.A.
	Mukhametzhanova, B.T. Sakhova. Theoretical calculations and construction of phase
	diagrams of multicomponent system Ti-Al-Mo-V-Zr // Bulletin of Toraigyrov
	University. Series "Science and Technology of Kazakhstan" №4 C. 200-211.
	https://doi.org/10.48081/CTWE8923
Patents	1. Nauryzbaev M.K., Soshin S.A., Shapovalov Y.A., Gumerov F.M., Mazanov S.V.,
	Tokpaev R.R., Tuleukhanov S. // Patent for invention №042946. Mobile universal
	flowing sub-supercritical unit. Published 06.04.2023, Bulletin No. 4.
	2. Baeshov A., Baeshova A.K., Zharmenov A.A. // Patent for useful model №7950.
	Method of reduction of copper (II) ions.
	3. Baeshova A.K., Baeshov A., Zhumabai F.M., Tazhibaeva A.Sh. // Patent for
	invention № 36190. Chemical method of obtaining sulfide of univalent copper.
Patents	 University. Series "Science and Technology of Kazakhstan" №4 C. 200-211. https://doi.org/10.48081/CTWE8923 1. Nauryzbaev M.K., Soshin S.A., Shapovalov Y.A., Gumerov F.M., Mazanov S.V., Tokpaev R.R., Tuleukhanov S. // Patent for invention №042946. Mobile universal flowing sub-supercritical unit. Published 06.04.2023, Bulletin No. 4. 2. Baeshov A., Baeshova A.K., Zharmenov A.A. // Patent for useful model №7950. Method of reduction of copper (II) ions. 3. Baeshova A.K., Baeshov A., Zhumabai F.M., Tazhibaeva A.Sh. // Patent for

